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Abstract

The levels of quality, maintainability, testability, and stability
of software can be improved and measured through the use of
automated testing tools throughout the software development
process. Automated testing tools assist software engineers to
gauge the quality of software by automating the mechanical
aspects of the software-testing task. Automated testing tools
vary in their underlying approach, quality, and ease-of-use,
among other characteristics. In this paper we propose a suite
of objective metrics for measuring tool characteristics, as an
aid in systematically evaluating and selecting automated test-
ing tools. 1

1. Introduction

Automated testing tools assist software engineers to gauge
the quality of software by automating the mechanical aspects of
the software-testing task. Automated testing tools vary in their
underlying approach, quality, and ease-of-use, among other
characteristics. In addition, the selection of testing tools needs
to be predicated on characteristics of the software component to
be tested. But how does a project manager choose the best
suite of testing tools for testing a particular software compo-
nent?

In this paper we propose a suite of objective metrics for
measuring tool characteristics, as an aid for systematically
evaluating and selecting the automated testing tools that would
be most appropriate for testing the system or component under
test. Our suite of metrics are also intended to be used to moni-
tor and gauge the effectiveness of specific combinations of test-
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ing tools during software development, in addition to con-
ducting ante or ex post facto analyses.

In addition, the suite of test-tool metrics is to be used in con-
junction with existing and future guidelines for conducting tools
evaluations and selections. In December of 1991, a working
group of software developers and tool users completed the Ref-
erence Model for Computing System-Tool Interconnections
(MCSTI), known as IEEE Standard 1175; see [1] for a discus-
sion of the MCSTI. As an offshoot of their work, they also
introduced a tool-evaluation system. The system implements a
set of forms which systematically guide users in gathering, or-
ganizing, and analyzing information on testing and other types
of tools for developing and maintaining software. The user can
view tool-dependent factors such as performance, user friendli-
ness, and reliability, in addition to environment-dependent fac-
tors such as the cost of the tool, the tool’s affect on organiza-
tional policy and procedures, and tool interaction with existing
hardware and software assets of an organization. The data
forms also facilitate the preference weighting, rating, and sum-
marizing selection criteria. The process model underlying the
MCSTI consists of five steps: analyzing user needs, establishing
selection criteria, tool search, tool selection, and reevaluation.

2. Software-Quality Metrics

There is an extensive body of open-source literature on the
subject of metrics for measuring the quality of software. The
history of software metrics began with counting the number of
lines of code (LOC). It was assumed that more lines of code
implied more complex programs, which in turn were more
likely to have errors. However, software metrics have evolved
well beyond the simple measures introduced in the 1960s.

2.1. Procedural (Traditional) Software Metrics

Metrics for traditional or procedural source code have
increased in number and complexity since the first intro-
duction of LOC. While LOC is still used, it is rarely meas-
ured simply to know the length of procedural programs
since there continues to be debate on the correlation be-
tween size and complexity. Instead, LOC is used in the
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computation of other metrics, most notably, in determining
the average number of defects per thousand lines of code.

McCabe [5] first applied cyclomatic complexity to computer
software: an estimate of the reliability, testability, and main-
tainability of a program, based on measuring the number of
linearly independent paths through the program. Cyclomatic
complexity is measured by creating a control graph representing
the entry points, exit points, decision points, and possible
branches of the program being analyzed. The complexity is
calculated as shown in Equation 1.

M = V(G) = e – n + 2p (1)

where V(G) is the cyclomatic number of G, e is the number of
edges, n is the number of nodes, and p is the number of uncon-
nected parts of G.

This metric however does not look at the specific imple-
mentation of the graph. For example, nested if-then-else state-
ments are treated the same as a case statement even though their
complexities are not the same.

Function point (FP) [6] is a metric that may be applied inde-
pendent of a specific programming language, in fact, it can be
determined in the design stage prior to the commencement of
writing the program. To determine FP, an Unadjusted Function
Point Count (UFC) is calculated. UFC is found by counting the
number of external inputs (user input), external outputs (pro-
gram output), external inquiries (interactive inputs requiring a
response), external files (inter-system interface), and internal
files (system logical master files). Each member of the above
five groups is analyzed as having either simple, average or
complex complexity, and a weight is associated with that mem-
ber based upon a table of FP complexity weights. UFC is then
calculated via:

UFC = Σ1->15 (number of items of variety i) x
(weight of i) (2)

Next, a Technical Complexity Factor (TCF) is determined
by analyzing fourteen contributing factors. Each factor is as-
signed a score from zero to five based on its criticality to the
system being built. The TCF is then found through the equa-
tion:

TCF = 0.65 + 0.01Σ1->14 Fi (3)

where FP is the product of UFC and TCF. FP has been criti-
cized due to its reliance upon subjective ratings and its founda-
tion on early design characteristics that are likely to change as
the development process progresses.

Halstead [7] created a metric founded on the number of op-
erators and operands in a program. His software-science metric
(a.k.a. halted length) is based on the enumeration of distinct
operators and operands as well as the total number of appear-
ances of operators and operands. With these counts, a system
of equations is used to assign values to program level (i.e., pro-
gram complexity), program difficulty, potential minimum vol-
ume of an algorithm, and other measurements.

2.2. Object-Oriented Software Metrics

The most commonly cited software metrics to be computed
for software with an object-oriented design are those proposed
by Chidamber and Kemerer [8]. Their suite of metrics consists
of the following metrics: weighted methods per class, depth of
inheritance tree, number of children, coupling between object
classes, response for a class, and lack of cohesion in methods.

Weighted-methods-per-class (WMC) is the sum of the indi-
vidual complexities of the methods within that class. The num-
ber of methods and the sum of their complexities correlate to
the level of investment of time and effort in designing, devel-
oping, testing, and maintaining the class. Additionally, a large
number of methods can result in higher level of complexity due
to the increased likelihood of their use by children of the class.

Depth of inheritance tree (DIT) is defined as the maximum
length from the node to the root of a class tree. The deeper a
class is in the inheritance hierarchy, the greater the likelihood
that it inherits a large number of methods, thereby making its
behavior more complex to both predict and analyze. Also, a
larger DIT implies greater design complexity due to the larger
number of classes and methods in the project.

The number of immediate subclasses of class is represented
by “number of children” (NOC). A larger NOC implies a sig-
nificant amount of inheritance and reuse. The more times a
class is inherited, the greater the possibility that errors will be
made in its abstraction and the greater the possible impact the
class has on the project. Therefore, a class with a high NOC
may need to be tested more thoroughly than classes with lower
NOC’s.

Coupling between object classes (CBO) is defined as the
number of classes to which it is coupled (i.e., interdependent
on). When a class inherits methods, instance variables, or other
characteristics from another class, they are coupled. The
greater the number of shared attributes, the greater the interde-
pendence. A significant amount of coupling leads to an in-
creased probability of changes in one class causing unac-
counted, and possibly undesired, changes in the behavior of the
other. This tighter coupling may require more extensive testing
of classes that are tightly coupled together.

Response for a class (RFC) is defined as the cardinality of
the set whose members are the methods of the class that can
potentially be called in response to a message received by an
object in that class. The set’s members include the class meth-
ods called by other methods within the class being analyzed. A
large RFC indicates that there are numerous ways in which
class methods are called, possibly from many different classes.
This may lead to difficulties in understanding the class, making
analysis, testing, and maintenance of the class uncertain.

Lack of cohesion in methods (LCOM) is defined as the
number of method pairs with no shared instance variables mi-
nus the number of method pairs with common attributes. If the
difference is negative, LCOM is set equal to zero. A large
LCOM value indicates strong cohesion within the class. A lack
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of cohesion, indicated by a low LCOM value, signifies that the
class represents two or more concepts. The assumption here is
that by separating the class into smaller classes, that the com-
plexity of the class, and perhaps of the entire software project,
can be reduced, ceteris paribus.

Lie and Henry [9] extended Chidamber and Kemerer’s suite.
They introduced the Message Passing Coupling (MPC) metric
that counts the number of send statements defined in a class;
this signifies the complexity of message passing between
classes. Their Data Abstraction Coupling (DAC) metric is cal-
culated based on the number of abstract data types used in the
class and defined in another class. The greater the DAC value,
the greater the dependence on other classes and therefore the
greater the complexity of the development and maintenance of
the software.

Henry and Kafura developed the Information Flow Com-
plexity (IFC) metric to measure the total level of information
flow of a module [10]. A module’s (M) fan-in is defined as the
number of local flows that terminate at M plus the number of
data structures from which information is retrieved by M. Fan-
out is defined as the number of local flows that emanate from M
plus the number of data structures that are updated by M. Local
flow is defined as either a module invoking a second module
and passing information to it or a module being invoked re-
turning a result to the calling module. IFC is then found by
summing the LOC of M and the square of the product of M’s
fan-in and fan-out. Shepperd removed LOC to achieve a metric
more directly related to information flow [11].

IFC(M) = LOC(M) + [fan-in(M) x fan-out(M)]2 (4)

Lorenz and Kidd [12] proposed another set of object-ori-
ented software quality metrics. Their suite includes the follow-
ing:
• Number of scenarios scripts (use cases) (NSS)
• Number of key classes (NKC)
• Number of support classes
• Average number of support classes per key class (ANSC)
• Number of subsystems (NSUB)
• Class size (CS)
• Total number of operations + number of attributes
• Both include inherited features
• Number of operations overridden by subclass (NOO)
• Number of operations added by a subclass (NOA)
• Specialization index (SI)
• SI = [NOO x level] / [Total class method]
• Average method size
• Average number of methods
• Average number of instance variables
• Class hierarchy nesting level

3. Prior Work on Metrics for Software-
Testing Tools

The Institute for Defense Analyses (IDA) published two
survey reports on tools for testing software [2],[3]. Although
the tool descriptions contained in those reports are dated, the
analyses provide a historical frame of reference for the recent
advances in testing tools and identify a large number of meas-
urements that may be used in assessing testing tools. For each
tool, the report details different types of analysis conducted, the
capabilities within those analysis categories, operating environ-
ment requirements, tool-interaction features, along with generic
tool information such as price, graphical support, and the num-
ber of users.

The research conducted at IDA was intended to provide
guidance to the U.S. Department of Defense on how to evaluate
and select software-testing tools. The major conclusions of the
study were that:
• Test management tools offer critical support for planning

tests and monitoring test progress.
• Problem reporting tools offered support for test manage-

ment by providing insight software products’ status and
development progress.

• Available static analysis tools of the time were limited to
facilitating program understanding and assessing charac-
teristics of software quality.

• Static analysis tools provided only minimal support for
guiding dynamic testing.

• Many needed dynamic analysis capabilities were not com-
monly available.

• Tools were available that offered considerable support for
dynamic testing to increase confidence in correct software
operation.

• Most importantly, they determined that the range of capa-
bilities of the tools and the tools’ immaturity required care-
ful analysis prior to selection and adoption of a specific
tool.

The Software Technology Support Center (STSC) at Hill
AFB works with Air Force software organizations to identify,
evaluate and adopt technologies to improve product quality,
increase production efficiency, and hone cost and schedule pre-
diction ability [4]. Section four of their report discusses several
issues that should be addressed when evaluating testing tools
and provides a sample tool-scoring matrix. Current product
critiques and tool-evaluation metrics and other information can
be obtained by contacting them through their website at
http://www.stsc.hill.af.mil/SWTesting/.

4. Proposed Suite of Metrics for Evaluating
and Selecting Software-Testing Tools

Weyuker identified nine properties that complexity measures
should possess [13]. Several of these properties can be applied
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to other metrics too; these characteristics were considered in our
formulation of metrics for evaluating and selecting software-
testing tools.

Our suite of metrics for evaluating and selecting software-
testing tools has the following properties: the metrics exhibit
non-coarseness in that they provide different values when ap-
plied to different testing tools; the metrics are finite in that there
are a finite number of tools for which the metrics’ results in an
equal value, yet they are non-unique in that a metric may pro-
vide the same value when applied to different tools; and the
metrics are designed to have an objective means of assessment
rather than being based on subjective opinions of the evaluator.

4.1. Metrics for Tools that Support Testing Pro-
cedural Software

These metrics are applied to the testing tool in its en-
tirety vice a specific function performed by the tool.

4.1.1. Human Interface Design (HID). All automated testing
tools require the tester to set configurations prior to the com-
mencement of testing. Tools with well-designed human inter-
faces enable easy, efficient, and accurate setting of tool configu-
ration. Factors that lead to difficult, inefficient, and inaccurate
human input include multiple switching between keyboard and
mouse input, requiring large amount of keyboard input overall,
and individual input fields that require long strings of input.
HID also accounts for easy recognition of the functionality of
provided shortcut buttons.

HID = KMS + IFPF + ALIF + (100 – BR) (5)

where KMS is the average number of keyboard to mouse
switches per function, IFPF is the average number of input
fields per function, ALIF is the average string length of in-
put fields, BR is the percentage of buttons whose functions
were identified via inspection by first time users times ten

A large HID indicates the level of difficulty to learn the
tool’s procedures on purchase and the likelihood of errors in
using the tool over a long period of time. HID can be reduced
by designing input functions to take advantage of current con-
figurations as well as using input to recent fields as default in
applicable follow on input fields. For example, if a tool re-
quires several directories to be identified, subsequent directory
path input fields could be automatically completed with previ-
ously used paths. This would require the tester to only modify
the final subfolder as required vice reentering lengthy directory
paths multiple times.

4.1.2. Maturity & Customer Base (MCB). There are several
providers of automated testing tools vying for the business of
software testers. These providers have a wide range of experi-
ence in developing software-testing tools. Tools that have
achieved considerable maturity typically do so as a result of
customer satisfaction in the tool’s ability to adequately test their

software. This satisfaction leads to referrals to other users of
testing tools and an increase in the tool’s customer base.

MCB = M + CB + P (6)

where M (maturity) is the number of years tool (and its pre-
vious versions) have been applied in real world applica-
tions, CB (customer base) is the number of customers who
have more than one year of experience applying the tool,
and P (projects) is the number of previous projects of simi-
lar size that used the tool

Care must be taken in evaluating maturity to ensure the
tool’s current version does not depart too far from the vendor’s
previous successful path. Customer base and projects are diffi-
cult to evaluate without relying upon information from a vendor
who has a vested interest in the outcome of the measurement.

4.1.3. Tool Management (TM). As software projects become
larger and more complex, large teams are used to design, en-
code, and test the software. Automated testing tools should
provide for several users to access the information while en-
suring proper management of the information. Possible meth-
ods may include automated generation of reports to inform
other testers on outcome of current tests, and different levels of
access (e.g., read results, add test cases, modify/remove test
cases).

TM = AL + ICM (7)

where AL (access levels) is the number of different access
levels to tool information, and ICM (information control
methods) is the sum of the different methods of controlling
tool and test information.

4.1.4. Ease of Use (EU). A testing tool must be easy to use to
ensure timely, adequate, and continual integration into the soft-
ware development process. Ease of use accounts for the fol-
lowing: learning time of first-time users, retainability of proce-
dural knowledge for frequent and casual users, and operational
time of frequent and casual users.

EU = LTFU + RFU + RCU + OTFU + OFCU (8)

where LTFU is the learning time for first users, RFU is the
retainability of procedure knowledge for frequent users,
RCU is the retainability of procedure knowledge for casual
users, OTFU is the average operational time for frequent
users, and OTCU is the average operational time for casual
users.

4.1.5. User Control (UC). Automated testing tools that pro-
vide users expansive control over tool operations enable testers
to effectively and efficiently test those portions of the program
that are considered to have a higher level of criticality, have
insufficient coverage, or meet other criteria determined by the
tester. UC is defined as the summation of the different portions
and combinations of portions that can be tested. A tool that
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tests only an entire executable program would receive a low UC
value. Tools that permit the tester to identify which portions of
the executable will be evaluated by tester-specified test scenar-
ios would earn a higher UC value. Tools that will be imple-
mented by testing teams conducting a significant amount of
regression testing should have a high UC value to avoid retest-
ing of unchanged portions of code.

4.1.6 Test Case Generation (TCG). The ability to automati-
cally generate and readily modify test cases is desirable. Test-
ing tools which can automatically generate test cases based on
parsing the software under test are much more desirable that
tools that require testers to generate their own test cases or pro-
vide significant input for tool generation of test cases. Avail-
ability of functions to create new test cases based on modifica-
tion to automatically generated test cases greatly increases the
tester’s ability to observe program behavior under different
operating conditions.

TCG = ATG + TRF (9)

where ATG is the level of automated test case generation as
defined by:
10: fully automated generation of test cases
8: tester provides tool with parameter names & types via

user-friendly methods (i.e., pull down menus)
6: tester provides tool with parameter names & types
4: tester must provide tool with parameter names, types and

range of values via user-friendly methods
2: tester must provide tool with parameter names, types and

range of values
0: tester must generate test cases by hand

and TRF is the level of test case reuse functionality:

10: test cases may be modified by user friendly methods
(i.e. pull down menus on each test case parameter) and
saved as a new test case

8: test cases may be modified and saved as a new test case
6: test cases may be modified by user friendly methods but

cannot be saved as new test cases
4: test cases may be modified but cannot be saved as new

test cases
0: test cases cannot be modified

4.1.7. Tool Support (TS). The level of tool support is impor-
tant to ensure efficient implementation of the testing tool, but it
is difficult to objectively measure. Technical support should be
available to testers at all times testing is being conducted, in-
cluding outside traditional weekday working hours. This is
especially important for the extensive amount of testing fre-
quently conducted just prior to product release. Technical sup-
port includes help desks available telephonically or via email,
and on-line users’ groups monitored by vendor technical sup-
port staff. Additionally, the availability of tool documentation

that is well organized, indexed, and searchable is of great bene-
fit to users.

TS = ART + ARTAH + ATSD – DI (10)

where ART is the average response time during scheduled
testing schedule, ARTAH is the average response time out-
side scheduled testing schedule, ATSD is the average time
to search documentation for desired information, and DI is
the documentation inadequacy measured as the number of
unsuccessful searches of documentation.

4.1.8. Estimated Return on Investment (EROI). A study
conducted by the Quality Assurance Institute involving 1,750
test cases and 700 errors has shown that automated testing can
reduce time requirements for nearly every testing stage and
reduces overall testing time by approximately 75% [14]. Ven-
dors may also be able to provide similar statistics for their cus-
tomers currently using their tools.

EROI = (EPG x ETT x ACTH) + EII – ETIC +
(EQC x EHCS x ACCS) (11)

where EPG is the Estimated Productivity Gain, ETT is the
Estimated Testing Time without tool, ACTH is the Average
Cost of One Testing Hour, EII is the Estimated Income In-
crease, ETIC is the Estimated Tool Implementation Cost,
EQC is the Estimated Quality Gain, EHCS is the Estimated
Hours of Customer Support per Project, and ACCS is the
Average Cost of One Hour of Customer Support.

4.1.9. Reliability (Rel). Tool reliability is defined as the
average mean time between failures.

4.1.10. Maximum Number of Classes (MNC). Maximum
number of classes that may be included in a tool’s testing
project.

4.1.11. Maximum Number of Parameters (MNP).
Maximum number of parameters that may be included in a
tool’s testing project.

4.1.12. Response Time (RT). Amount of time used to ap-
ply test case on specified size of software. RT is difficult to
measure due to the varying complexity of different pro-
grams of the same size.

4.1.13. Features Support (FS). Count of the following
features:
• Extendable: tester can write functions that expand pro-

vided functions
• Database available: open database for use by testers
• Integrates with software development tools
• Provides summary reports of findings
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4.2. Metrics for Tools that Support Testing Ob-
ject-Oriented Software

Studies are continuously being conducted to ascertain the
validity and usefulness of other software quality metrics. A
seminal study, conducted at the University of Maryland, deter-
mined that the majority of the metrics proposed by Chidamber
and Kemerer were useful in predicting the proneness of the
software under test to containing faults [15]. As such, auto-
mated testing tools implemented on object-oriented software
should support their metric suite with the exception of LCOM.
Testing tool support of the other object-oriented software qual-
ity metrics discussed previously should also be measured. This
will enable the software development manager to measure the
level of support for measuring the quality of object-oriented
software.

5. Three Tools Selected for Use in Validating
the Proposed Suite of Metrics

As a first attempt to validate our proposed suite of metrics
for evaluating and selecting software-testing tools, we selected
three commercial-off-the-shelf (COTS) software-testing tools
against which to apply our metrics. In the following subsec-
tions, we describe each tool, discuss the setup of each tool for
validation purposes, and discuss problems we encountered in
exercising the tools. The tools were selected based on whether
or not they support C++ and also whether or not they could be
run on a Microsoft Windows platform.

5.1. LDRA Testbed

LDRA Testbed is a source code analysis and test coverage
measurement tool. Testbed utilizes its own parsing engine.
Each of its modules is integrated into an automated, software
testing toolset.

LDRA Testbed’s two main testing domains are Static and
Dynamic Analysis. Static Analysis analyzes the code, while
Dynamic Analysis involves execution with test data to detect
defects at run time. LDRA Testbed analyzes the source code,
producing reports in textual and graphical form depicting both
the quality and structure of the code, and highlighting areas of
concern.

LDRA Testbed supports the C, C++, ADA, Cobol, Coral66,
Fortran, Pascal, and Algol programming languages. It has been
ported to the following operating systems: MS Windows
NT/2000/9x/Me, Digital Unix, HP-UX, AIX, SCO ODT, SGI
Irix, SunOS 4 (Solaris. 2.1), Solaris Sparc/Intel, VAX/VMS,
OpenVMS, MVS, Unisys A Series, and Unisys 2200 Se-
ries.LDRA Testbed was installed on a computer using Micro-
soft Windows 98. Projects tested were written, compiled, and
executed in Microsoft Visual Studio 6.0. LDRA Testbed does
not embed itself into the Visual Studio application, but does

provide an icon on the desktop for easy launching of the testing
tool.

The tool performed well once a few configuration difficul-
ties were corrected. The installation wizard did not automati-
cally update settings for the location of the vcvars32.bat file. In
response to queries, LDRA’s technical support was timely,
friendly, and knowledgeable.

5.2. Parasoft Testbed

For validation purposes, we used the following Parasoft
Products: C++ Test with embedded CodeWizard (beta version
1.3 August 2, 2001), and Insure++. C++ Test is a C/C++ unit-
testing tool that automatically tests any C/C++ class, function,
or component without requiring the user to develop test cases,
harnesses, or stubs. C++ Test automatically performs white-
box, black-box, and regression testing. CodeWizard can en-
force over 170 industry-accepted C/C++ coding standards and
permits the user to create custom rules that apply to a particular
software-development effort. Insure++ automatically detects
runtime errors in C/C++ programs.

Parasoft’s Testing Tool suite supports Microsoft Visual Stu-
dio 6.0 on Windows NT/2000. Programs tested were written,
compiled, and executed in Microsoft Visual Studio 6.0 running
on top of Microsoft Windows 2000. All three products allow
themselves to be integrated into the Visual Studio application.
Testing operations can be conducted from either buttons added
to Visual Studio toolbars or via the Tools menu on the Visual
Studio menu bar.

Configuring CodeWizard: In order to use CodeWizard, you
must have CodeWizard (with a valid CodeWizard license) in-
stalled on your machine. To configure C++ Test to automati-
cally run your classes and methods through CodeWizard, en-
able the Use CodeWizard option by choosing Options> Project
Settings, then selecting the Use CodeWizard option in the Build
Options tab.

Parasoft C++ Test was initially installed on a computer us-
ing Microsoft Windows 98, as had been done during earlier
testing. During test execution, C++ Test consistently produced
time-out errors. After speaking with technical support to iden-
tify the source of the difficulties, it was discovered that version
1.3 (June 2001) of C++ Test did not support Windows 98.
After obtaining version 1.3 (July 2001) of C++ Test, it and
Code Wizard and Insure++ were installed on a computer using
Windows 2000. As Parasoft technical support was discussing
the many features available in their products, it was determined
that there was a newer version (beta version 1.3, August 2,
2001) available. This new version incorporates the code analy-
sis features of Code Wizard into C++ Test.

5.3. Telelogic Testbed

Logiscope TestChecker measures structural test coverage
and shows uncovered source code paths. Logiscope Test-
Checker is based on a source code instrumentation technique
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that can be tailored to the test environment. Logiscope Test-
Checker identifies which parts of the code remain untested. It
also identifies inefficient test cases and regression tests that
should be re-executed when a function or file is modified. Lo-
giscope TestChecker is based on source code instrumentation
techniques (e.g., use of probes).

The Telelogic Tau Logiscope 5.0 testing tool suite was in-
stalled on a computer using Microsoft Windows 2000. Projects
tested were written, compiled, and executed in Microsoft Visual
Studio 6.0. Telelogic provides access to its functions by plac-
ing selection into the Tools menu on the Visual Studio menu
bar, but does not automatically introduce graphical shortcut
buttons on the Visual Studio toolbar.

While the example in the installation manual worked well, it
did not address all the functions that are not performed by the
wizard (e.g., creation of batch files). Several of the problems
that we encountered could be eliminated by better organization
of installation manuals, such as placing the Microsoft Visual
Studio integration content at the beginning of the manual. Once
integrated into Visual Studio, the tools were quite easy to use.

6. Three Versions of the Software Program
Used for Validation Purposes

The validation experiments conducted were performed on
three versions of discrete-event simulation programs, all of
which model the same bus-type Carrier Sense Multiple Access
with Collision Detection (CSMA/CD) network. The first ver-
sion is a procedural program developed by Sadiku and Ilyas
[16] with the modification of one line so that it could be oper-
ated on a wide range of C and C++ compilers. This version
will be referred to as the procedural version.

This program was selected for this project for two purposes.
First, it uses several blocks of code numerous times throughout
the program. This factor lends the program to implementation
through the use of functions in place of those blocks of code as
was done in the second version of the program, hereafter called
the functional version. Second, it simulates the interaction of
several real-world items that lend themselves to being repre-
sented by classes and objects. This approach to simulating the
network was used in the third version of the program, which we
refer to as the object-oriented version of the program.

7. Exercising the Software-Testing Tools

7.1. LDRA Testbed

7.1.1. Procedural. Coverage Report – In order to achieve
DO178B Level A, the program must achieve 100% coverage in
both statement coverage and branch coverage. The procedural
program achieved an overall grade of fail because it only
achieved 88% statement coverage and 83% branch coverage.
554 of a possible 629 statements were covered during the test-

ing process, and the testing tool covered 146 out of 176
branches. What is important to note about 88% coverage is that
we only used default test settings and did not conduct additional
test runs to improve our coverage. As mentioned before in the
tool summary, to increase the coverage, the user must construct
further sets of test data to be run with the instrumented source
code. The report lists each individual line that is not executed
by any testing data.

Metrics Report – Our procedural program returned a value
of 130 knots and a cyclomatic complexity of sixty-one. The
130 knots signals that the procedural code is disjointed and
would require somebody trying to read the code to jump back
and forth between functions in order to understand what the
code is attempting to accomplish. The cyclomatic complexity of
sixty-one demonstrates that the program can be re-ordered to
improve readability and reduce complexity.

Quality Report – The Quality Report gives an instant view
on the quality of the source code analyzed. Overall LDRA’s
Testbed gave the procedural program a grade of fail. It re-
ported 109 occurrences of eighteen different violations classi-
fied as “Mandatory (Required) Standards,” eleven occurrences
of three different violations classified as “Checking (Manda-
tory/Required) Standards,” and eighty occurrences of six differ-
ent violations against standards considered “Optional (Advi-
sory).” If a Motor Industry Software Reliability Association
(MISRA) code is violated, it is so annotated by the LDRA re-
port.

7.1.2. Functional. Coverage Report – The functional program
achieved an overall grade of fail because it only achieved 90%
statement coverage and 86% branch coverage. 557 of a possi-
ble 619 statements were covered during the testing process, and
the testing tool covered 169 out of 196 branches. Again, in
achieving 88% coverage, we only used default test settings and
did not conduct additional test runs to improve our coverage.

Metrics Report – Our functional program returned a value of
109 knots and a cyclomatic complexity of fifty-five. The 109
knots signals that the functional code is disjoint, require some-
body trying to read the code to jump back and forth between
functions in order to understand what the code does. The cyc-
lomatic complexity of fifty-five indicates that the program can
be re-ordered to improve readability and reduce complexity.

Quality Report – The Quality Report provides a view of the
quality of the source code. Overall LDRA’s Testbed gave the
functional program a grade of fail. It reported 115 occurrences
of eighteen different violations classified as “Mandatory (Re-
quired) Standards,” fourteen occurrences of four different vio-
lations classified as “Checking (Mandatory/Required) Stan-
dards,” and thirty-six occurrences of six different violations
against standards considered “Optional (Advisory).”

7.1.3. Object-Oriented. Coverage Report – Technical diffi-
culties with the tools prevented the generation of coverage data
for the object-oriented program.
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Metrics Report – The object-oriented program returned a
value of fifty-six knots and a cyclomatic complexity of forty-
seven. The fifty-six knots indicates that the object-oriented
code is disjoint and would require somebody trying to read the
code to jump back and forth between functions in order to un-
derstand what the code is attempting to accomplish. The cyc-
lomatic complexity of forty-seven indicates that the program
can be re-ordered to improve readability and reduce complex-
ity.

Quality Report – The Quality Report gives an instant view
on the quality of the source code analyzed. Overall LDRA’s
Testbed gave the object-oriented program a grade of fail. It
reported 401 occurrences of thirty-one different violations clas-
sified as “Mandatory (Required) Standards,” 102 occurrences
of nine different violations classified as “Checking (Manda-
tory/Required) Standards,” and seventy-five occurrences of
nine different violations against standards considered “Optional
(Advisory).”

7.1.4. LDRA Testbed – Reporting Characteristics. LDRA’s
Testbed has numerous report formats to support many different
decision processes. The static call-graph displays the connec-
tions between methods with each method shown in a color that
signifies the status of that method’s testing.

7.2. Parasoft Testbed

7.2.1. Procedural. Parasoft C++ (with integrated Code Wiz-
ard) detected 95 occurrences of eight different rule violations.

7.2.2. Functional. Parasoft C++ (with integrated Code Wiz-
ard) detected eighty-three occurrences of eight different rule
violations during static analysis of the functional version of the
source code. Of the 328 test cases conducted, 321 passed and
seven reported time-out errors.

7.2.3. Object-Oriented. Parasoft C++ (with integrated Code
Wizard) detected 122 occurrences of 12 different rule viola-
tions during static analysis of the object-oriented version of the
source code. Of the seventy-one test cases conducted, fifty
passed and twenty-one reported access violation exception er-
rors. Insure++ reported thirty-nine outstanding memory refer-
ences.

7.2.4. Reporting Characteristics. C++Test, CodeWizard, and
Insure++ provide itemized reports of discovered errors, but do
not provide extensive summary reports. Thus, the reports gen-
erated by these tools are quite different than those provided by
LDRA.

During the execution of testing C++Test reports the progress
using bar graphs to indicate the number and percentage of
methods and tests conducted. Additionally, if coverage is en-
abled the tools will highlight the lines of code which have been
tested.

Results of the static analysis conducted upon the source code
are reported under the “Static analysis” tab under the “Results”
tab. The number in square braces next to the file name indi-
cates the total number of occurrences of coding rule violations
within that file. The next line indicates the number of occur-
rences of violations of a specific coding rule. Expanding the
line reveals the location (i.e., source code line number) of each
occurrence of the violation.

Results of the dynamic analysis conducted on the source
code are reported under the “Dynamic analysis” tab under the
“Results” tab. Each line indicates the status of testing for an
individual method. The numbers in the square braces on the
first line indicate the following information:
• OK: The number of test cases that in which the method

returned and had the correct return value and/or post-con-
dition

• Failed: The number of test cases in which the test did not
have the correct return value or post-condition

• Error: The number of test cases in which the method
crashed

• Total: The total number of test cases used
Clicking on a test case’s results will cause its branch to ex-

pand. If a test case passes, it will display the number of times it
was executed and its arguments, returns, preconditions, and
post-conditions.

If a test case had an error or failed, expanding its branch will
display the number of times it was executed, its arguments,
returns, preconditions, post-conditions, and details about the
type of exception or error found. It also indicates the line num-
ber at which the exception or error occurred.

7.3. Logiscope Testbed

7.3.1. Procedural. Telelogic’s Logiscope reported 218 occur-
rences of fourteen different programming rule violations. If a
rule is violated, it is so annotated in red within the “State” col-
umn followed by a listing of source code line numbers where
the rule violation occurs in the “Lines” column. If a rule is not
violated, it is so stated in green in the “State” column.

7.3.2. Functional. Technical difficulties were experienced in
trying to conduct tests on the functional version of the software.
Test results were inconclusive.

7.3.3. Object-Oriented. Logiscope identified 372 occurrences
of twenty different rules violations in the object-oriented ver-
sion of the network simulation program. The reports are in the
same format as for procedural with each file’s violations dis-
played in a separate table. Technical difficulties were encoun-
tered with the Quality Report. Function level attributes were
measured to be in the “Excellent” or “Good” range for more
than 90% of the functions.
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7.3.4. Reporting Characteristics. Logiscope provides its re-
ports in HTML format, which allows for easy navigation within
the reports. The report includes a separate table for each rule
listing the occurrences of violations for each file. There is an
additional “Synthesis Table” which creates a matrix summa-
rizing the number of violations of each rule per each file. Each
mention of a rule is hyperlinked to a detailed explanation of the
rule at the bottom of the report. File names are linked to the
table that lists the violations within that report. The reports also
list the date and time the analysis was last conducted on each
file. This feature assists in the management of the testing re-
ports.

The Quality report is also in HTML format and provides
similar hyperlink features as the Rules report. When analyzing
object-oriented programs, Logiscope provides reports on three
levels: application, class, and function. At the application level,
the project is given a Maintainability score of Excellent, Good,
Fair or Poor. The score is based on the project’s scoring in four
areas: Analyzability, Changeability, Stability, and Testability.
All five areas are hyperlinked to the functions the tool uses to
calculate the scores. The scoring tables are followed by a table
listing over twenty application level metrics including Method
Inheritance Factor, Method Hiding Factor, Polymorphism Fac-
tor, Coupling Factor, and many others including cyclomatic
complexity measures.

The Class level section of the report displays the same at-
tributes as the Application Level with the addition of three met-
rics: reusability, usability, and specializability. Again, each is
hyperlinked to explanations of the methods for determining
each attribute’s values.

7.4. Computation of Metrics

During the application of the three testing-tool suites on the
three software versions, measurements were taken to calculate
the testing-tool metrics.

7.4.1. Human-Interface Design. To calculate the human-in-
terface design (HID) metric, measurements were taken during
three operations: establishing test project, conducting test pro-
ject, and viewing testing results.

While conducting the operations with the LDRA tools, there
were six occasions that required the user to transfer from the
keyboard to the mouse or vice versa. Dividing this number by
the number of operations (three) results in an average of two
keyboard-to-mouse switches (KMS). There were fifteen input
fields resulting in five average input fields per functions (IFPF).
Eleven of the input fields required only mouse clicks and six
required entry of strings totaling eighty-three characters. The
average length of input fields (ALIF) was calculated by divid-
ing the sum of these inputs (ninety-four) by the number of input
fields (sixteen) resulting in an ALIF of six. In attempting to
identify the functions of sixteen buttons, eleven were identified
correctly. The percentage of 68.75 was subtracted from 100,

divided by ten, and rounded to the nearest integer to arrive at a
button recognition factor (BR) of three. The sum of KMS,
IFPF, ALIF, and BR earns LDRA a HID score of sixteen.

The same operations were performed with the Telelogic
products. There were fifteen occasions that required the user to
transfer from the keyboard to the mouse or vice versa. Dividing
this number by the number of operations (three) results in an
average of five keyboard-to-mouse switches (KMS). There
were twenty-four input fields resulting in eight average input
fields per functions (IFPF). Seventeen of the input fields re-
quired only mouse clicks and seven required entry of strings
totaling 146 characters. The average length of input fields
(ALIF) was calculated by dividing the sum of these inputs (163)
by the number of input fields (twenty-four) resulting in an ALIF
of seven. In attempting to identify the functions of ten buttons,
four were identified correctly. The percentage of forty was
subtracted from 100 and divided by ten to arrive at a button
recognition factor (BR) of six. The sum of KMS, IFPF, ALIF,
and BR earns LDRA a HID score of twenty-six.

Repeating the operations with the Parasoft tools, there were
six occasions that required the user to transfer from the key-
board to the mouse or vice versa. Dividing this number by the
number of operations (three) results in an average of two key-
board-to-mouse switches (KMS). There were twenty-two input
fields resulting in eight average input fields per functions
(IFPF). Sixteen of the input fields required only mouse clicks
and six required entry of strings totaling sixty-nine characters.
The average length of input fields (ALIF) was calculated by
dividing the sum of these inputs (eighty-seven) by the number
of input fields (twenty-two) resulting in an ALIF of four. In
attempting to identify the functions of sixteen buttons, fourteen
were identified correctly. The percentage of seventy-five was
subtracted from 100, divided by ten and rounded to the nearest
integer to arrive at a button recognition factor (BR) of three.
The sum of KMS, IFPF, ALIF, and BR earns LDRA a HID
score of seventeen. The HID scores for the three tool suites are
shown in Table 1.

Parasoft Telelogic LDRA
KMS 2 5 2
IFPF 8 8 5
ALIF 4 7 6
BR 3 6 3
HID 17 26 16

Table 1. Human-Interface Design Scores

7.4.2. Test Case Generation. Test case generation (TCG)
measurements were also obtained for each group of tools.
LDRA does not automatically generate test cases but does pro-
vide user-friendly features such as pull-down menus for created
test cases therefore it was assigned an eight for its level of
automated test case generation (ATG). LDRA offers user-
friendly features to allow for modifying existing test cases so it
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earned a score of ten for its level of test case reuse functionality
(TRF). Telelogic does provide automatic test case generation
so it earned an ATG score of ten. However, authors were un-
able to find reference to test case modification within the testing
tool application or documentation. Therefore, it was not as-
signed a TRF value. Parasoft also provides automatic test case
generation and user-friendly test-case-reuse functions, resulting
in scoring ten in both ATG and TRF. The sums of the ATG
and TRF are given in Table 2.

Parasoft Telelogic LDRA
ATG 10 10 8
TRF 10 0 10
TCG 20 10 18

Table 2. Test-Case Generation Scores

7.4.3. Reporting Features. The Reporting Features (RF) met-
ric is determined by one point for automatically generating
summary reports and one point for producing reports in a for-
mat (e.g., HTML or ASCII text documents) that are viewable
outside the application. LDRA and Telelogic automatically
generate summary reports formatted in HTML earning a RF
measure of two for each vendor. Parasoft also automatically
produces summary reports, but they must be viewed within the
Parasoft testing application. Therefore, Parasoft’s RF measure
is one.

7.4.4. Response Time. Each tool performed well with re-
gards to response time. LDRA averaged twenty-five min-
utes in performing its tests. Telelogic averaged approxi-
mately thirty-five minutes. Parasoft averaged forty-three
minutes.

7.4.5. Feature Support. The Feature Support (FS) is the count
of the following features that are supported: tool supports user-
written functions extending tool functionality, stores informa-
tion in a database open to the user, and integrates itself into
software development tools. LDRA supports all these features
resulting in a FS of three. Telelogic supports an open database
and integration, but the authors were unable to determine its
extendibility support. Telelogic earned a FS score of two.
Parasoft integrates itself with software development tools, but
no information regarding the two other features was available.
Therefore, Parasoft’s FS value was assigned a value of one.

7.4.6. Metric Suites Supported. The Metric Suites Supported
(MSS) metric is based on the tool’s support of three different
software quality metric suites: McCabe, function points, and
Halstead. Parasoft does not report on any of these metrics, and
hence, it is assigned a value of zero. Telelogic and LDRA re-
port on McCabe and Halstead, but not function points, earning
each a MSS value of two. LDRA is developing the capability
to report function-point metrics.

7.4.7. Maximum Number of Classes. No tool reported a limit
on the number of classes it could support when testing object-
oriented programs. Even so, this metric should remain within
the testing tool metric. It could be detrimental to a software
development project’s success if a tool were selected and im-
plemented only to discover it could not support the number of
classes contained in the project.

7.4.8. Object-Oriented Software Quality Metrics. The Ob-
ject-oriented Software Quality Metrics is the count of various
object-oriented software metrics including those from the met-
rics suites created by Chidamber & Kemerer, Lie & Henry,
Lorenz & Kidd, and Henry & Kafura. Parasoft does not report
any of these metrics, resulting in no score. Telelogic supports
the Chidamber & Kemerer suite, the Le & Henry suite, as well
as several from the Lorenz & Kidd suite, thus earning an
OOSWM value of twelve. LDRA also supports metrics from
several of the suites warranting a score of eleven. Measurement
of this metric is complicated through tools referring to meas-
urements by titles not matching those listed in the suites. Pro-
ject managers should consult tool documentation or vendor
representatives if a desired metric does not appear to be sup-
ported.

7.4.9. Tool Management. None of the three testing tool suites
provide different access levels or other information control
methods. Tool management must be controlled via computer
policies implemented in the operating system and other appli-
cations outside of the suite of testing tools.

7.4.10. User Control. All tools offered extensive user control
of which portions of the code would be tested by a specified test
case. Each allowed the user to specify a function, class, or pro-
ject, or any combination of the three, to be tested.

7.4.11. Other Testing Tool Metrics. The remaining testing
tool metrics require execution of extensive experiments or input
from tool vendors. The scope of our research prevents con-
ducting detailed experiments. Along with insufficient input
from the vendors, this prevents analysis of the remaining met-
rics.

8. Analysis of Results

The three suites of testing tools provided interesting re-
sults on the relative quality of the three versions of the
software under test. LDRA’s Testbed reported an increas-
ing number of programming-standard violations as the pro-
cedural version was first converted to the functional design
then translated into the object-oriented version. The num-
ber of standards violations also increased as the design
moved away from procedural design. Although the quantity
of violations and the quantity of types of violations in-
creased, the cyclomatic complexity decreased at each in-
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crement. Statement and branch coverage did not signifi-
cantly differ across the three versions. While the other tools
reported different information, their results were consistent
with an increasing number of errors discovered in the non-
procedural version yet increased levels of quality. Table 3
summarizes the findings.

The tools offer differing views of the quality of the software
under test. When testing the procedural program, LDRA re-
ported 200 occurrences of twenty-seven different coding stan-
dards, Telelogic reported a similar 218 occurrences but of only
fourteen different rule violations, and Parasoft reported only
ninety-five occurrences of only eight different rule violations.
These differences can be attributed to the different standards
and rules that are tested for by each tool. LDRA appends sev-
eral industrial standards such as the Motor Industry Software
Reliability Association (MISRA) C Standard and the Federal
Aviation Authority’s DO-178B standard. Likewise, the set of
standards tested for by Telelogic and Parasoft intersect but are
not identical.

Similar results occur when comparing tool results for the
functional and object-oriented versions. Project managers
should compare these differences to determine whether they
would have an affect on the tool selection decision. If the addi-
tional standards used by LDRA do not pose an issue for current
or prospective customers, the impact will be minimal.

After developing the proposed testing-tool metrics, we ap-
plied them to the three testing tool suites. During the process of
applying the metrics, we discovered that several of the metrics
are quite difficult, if not impossible, to calculate without having
additional information supplied by the tool vendor. For exam-
ple, if a vendor has not conducted a study on the tool’s opera-
tional retainability by its users, experiments would need to be
designed and conducted to evaluate the performance of users in
applying the tools. If a vendor does not have statistics on its
average response time to customer support requests, calculating
the measure would be impossible.

Procedural Functional Object-Oriented

LDRA 88% statement coverage 90% statement coverage Not available

83% branch coverage 86% branch coverage Not available

130 knots 109 knots 56 knots

61 cyclomatic complexity 55 cyclomatic complexity 47 cyclomatic complexity

109 occurrences of 18 different
mandatory standards

115 occurrences of 18 different
mandatory standards

401 occurrences of 31 different
mandatory standards

11 occurrences of 3 different
checking standards

14 occurrences of 4 different check-
ing standards

102 occurrences of 9 different
checking standards

80 occurrences of 6 different
optional standards

36 occurrences of 6 different op-
tional standards

75 occurrences of 9 different op-
tional standards

Parasoft 95 occurrences of 8 different
rules violations

83 occurrences of 8 different rules
violations

122 occurrences of 12 different
rules violations

Telelogic 218 occurrences of 14 different
rules violations

Not available 372 occurrences of 20 different
rules violations

Table 3. Summary of Tool Findings

Success was achieved in applying several of the metrics in-
cluding HID, TCG, and RF. HID measurements were calcu-
lated for each testing tool based on the sub-metrics of average
KMS, IFPF, ALIF, and BR when applicable. The sub-met-
rics demonstrated non-coarseness (different values were
measured), finiteness (no metric was the same for all tools),
and non-uniqueness (some equal values were obtained). The
HID measurements were all unique, indicating that the meas-
urement could be useful in comparing tools during the evalua-
tion and selection process.

TCG measurements also provided unique measurements
for each tool. Sub-metrics measuring levels of ATG and TRF
demonstrated non-coarseness, finiteness, and non-uniqueness.

RF measurements were also successful. It is simple to de-
termine whether a tool automatically generates summary re-
ports (SR) that are viewable without the tool application run-

ning (e.g., HTML document) (ER). The RF metric is non-
coarse, finite, and non-unique. However, because each tool
earned a SR score of one, additional testing should be con-
ducted to determine SR’s level of non-uniqueness.

RT measurements for the three tools were all different, in-
dicating that RT is non-coarse and finite. Although not shown
in the validation results, it appears that if two tools were to
complete a test run in the same amount time, then they would
receive a non-unique score.

No tools shared the same FS and OOSWM measurements.
Therefore, they are non-coarse and finite, but an expanded
study group of tools is required to verify their non-uniqueness.
Two tools earned the same metric-suite-supported score in-
dicating non-uniqueness, while the third earned a different
score showing the metric’s non-coarseness and finiteness.
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All three tools earned the same score in the TM and UC
metrics; further research must be conducted to determine the
validity and usefulness of this metric.

The Maturity & Customer Base, Ease of Use, Tool Support,
Estimated Return on Investment, Reliability, and Maximum
Number of Parameters metrics were not completed. In order to
do so would involve conducting more experiments or obtaining
tool-vendor input, the latter of which is not readily available.

9. Conclusion

Our metrics captured differences in the three suites of
software-testing tools, relative to the software system under
test; the software-testing tools vary in their underlying ap-
proach, quality, and ease-of-use, among other characteristics.
However, confirming evidence is needed to support our theo-
ries about the effectiveness of the tool metrics for improving
the evaluation and selection of software-testing tools.

10. Future Directions

10.1. Theoretical Basis for Tool Metrics

All three anonymous reviewers commented on the lack of
a theoretical foundation for our tools metrics. For instance,
we express MCB as a linearly additive relationship among the
variables M, CB, and P. However, the relationship could be
nonlinear, there could be some degree of correlation among
the three variables, and it may be necessary to normalize the
values for each of the variables before computing MCB.

We view the development of a theoretical basis for the tool
metrics as long-term research. In addition to establishing the
theory for each of the metrics, it is also necessary to develop a
theory of the relationship amongst the tool metrics. Two of
the products of this research might be the discovery of addi-
tional types of metrics, such as time-dependent metrics for
capturing the availability of software-testing tools, and what
might be termed “meta metrics,” that would provide informa-
tion about how to interpret or apply the tool metrics.

10.2. Experimental Validation of Tool Metrics

Another avenue of future research is to conduct more in-
tensive testing with the candidate tools by creating additional
test cases and modifying default test settings to improve test
coverage and conducting regression testing. (N.B.: We used
the default test settings of each tool to provide a baseline for
measuring tool characteristics.) One could also compare the
testing tools under various operating system configurations
and tool settings, or measure a tool’s capability and efficiency
in both measuring and improving testing coverage through
modifying default settings and incorporating additional test
cases. Research could also be conducted to measure a tool’s
ability to conduct and manage regression testing.

Moreover, one could incorporate a larger number of tool
suites from different vendors with a wider spectrum of pro-
gramming-language support; this would reduce the likelihood
of language-specific factors affecting the research findings.

Lastly, the discrete-event simulation software program
could be supplemented by case studies for which the target
software has a higher degree of encapsulation, inheritance,
and polymorphism. These case studies should include soft-
ware systems used in real-world operational environments.
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